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Abstract 

Background: Accumulating evidence suggests that BMI1 confers protective effects against Alzheimer’s disease (AD). 
However, the mechanism remains elusive. Based on recent pathophysiological evidence, we sought for the first time 
to identify genetic variants in BMI1 as associated with AD biomarkers, including amyloid‑β.

Methods: We used genetic, longitudinal cognition, and cerebrospinal fluid (CSF) biomarker data from participants in 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort (N = 1565). First, we performed a gene‑based asso‑
ciation analysis of common single nucleotide polymorphisms (SNPs) (minor allele frequency (MAF) > 5%) located 
within ± 20 kb of the gene boundary of BMI1, an optimal width for including potential regulatory SNPs in the 5′ and 
3′ untranslated regions (UTR) of BMI1, with CSF Aβ1‑42 levels. Second, we performed cross‑sectional and longitudinal 
association analyses of SNPs in BMI1 with cognitive performance using linear and mixed‑effects models. We replicated 
association of SNPs in BMI1 with cognitive performance in an independent cohort (N=1084), Religious Orders Study 
and the Rush Memory and Aging Project (ROS/MAP).

Results: Gene‑based genetic association analysis showed that BMI1 was significantly associated with CSF Aβ1‑42 
levels after adjusting for multiple testing using permutation (permutation‑corrected p value=0.005). rs17415557 in 
BMI1 showed the most significant association with CSF Aβ1‑42 levels. Participants with minor alleles of rs17415557 
have increased CSF Aβ1‑42 levels compared to those with no minor alleles. Further analysis identified and replicated 
the minor allele of rs17415557 as being significantly associated with slower cognitive decline rates in AD.

Conclusions: Our findings provide fundamental evidence that BMI1 rs17415557 may serve as a protective mecha‑
nism related to AD pathogenesis, which supports the results of previous studies linking BMI1 to protection against AD.
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Introduction
The etiology of non-familial Alzheimer’s disease (AD) 
remains unclear despite extensive research efforts. In 
terms of genetic risks, researchers have focused on 

multiple common genetic risk factors with low effect 
sizes [1]. Recent large-scale genome wide association 
studies (GWAS) have identified more than 20 AD suscep-
tibility loci [2]. Although common genetic variants have 
relatively small individual impact, the overall effect of 
multiple genetic risks can significantly increase the likeli-
hood of developing AD [3].

The BMI1 gene encodes a 37kDa protein BMI1, a 
component of the polycomb repressive complex 1 
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(PRC1). BMI1 is involved in cell development, DNA 
damage response, cellular senescence regulation, stem 
cell renewal and differentiation, and oncogenesis [4]. In 
terms of aging, the reduction of BMI1 expression in aging 
cells was reported in vitro and in vivo studies [5, 6]. This 
might be related to one of the functions of BMI1, repress-
ing cellular senescence [7]. Furthermore, recent stud-
ies have shown that BMI1 expression is reduced in AD 
brains but not in other types of dementia, such as fronto-
temporal dementia or dementia with Lewy bodies [8]. In 
line with that, BMI1 knock-out induced pluripotent stem 
cell (iPSC)-derived neurons induced pathologic char-
acteristics of AD [8], and a mouse model study showed 
increased amyloid plaque, total Tau, and p-Tau levels in 
aged Bmi1-haplodeficient (Bmi1+/-) mice [9].

Although the association between BMI1 and AD in 
terms of gene expression and protein concentration has 
been reported [8], the effect of single nucleotide poly-
morphisms (SNPs) in the BMI1 gene in AD has not been 
studied. In view of recent pathophysiological evidence, 
we sought for the first time to investigate whether genetic 
variation in BMI1 is associated with a core AD biomarker 
and cognitive decline. Here, we report a genetic associa-
tion analysis of SNPs in BMI1 with CSF Aβ1-42 levels and 
longitudinal cognitive performance in the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) cohort. We rep-
licated association of SNPs in BMI1 with cognition per-
formance in an independent Religious Orders Study and 
the Rush Memory and Aging Project (ROS/MAP) cohort.

Materials and methods
Subjects
Data used in the study were obtained from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI), a publicly 
available database (https:// adni. loni. usc. edu) [10, 11]. A 
total of 1565 participants had genetic data. Of those par-
ticipants, we used 1157 participants with cerebrospinal 
fluid (CSF) amyloid-β1-42 (Aβ1-42) levels and 1495 par-
ticipants with longitudinal cognitive performance data 
(Table 1, Supplementary Figure 1).

Additionally, we used an independent dataset to vali-
date ADNI findings from association analysis between 
genotype and cognitive function. The dataset is from two 
large cohorts maintained by investigators at the Rush 
Alzheimer’s Disease Center: the Religious Orders Study 
(ROS) and the Rush Memory and Aging Project (MAP) 
[12]. A total of 1084 participants had both genetic and 
longitudinal cognitive performance data.

Genotyping
The ADNI participants were genotyped using several 
Illumina genotyping platforms. Quality control (QC) 
procedures for participants and SNPs were performed 
as described previously [13]. After QC procedures, we 
selected only non-Hispanic participants of European 
ancestry and imputed un-genotyped SNPs separately in 
each platform using Markov Chain Haplotyping with 
the Haplotype Reference Consortium data as a reference 
panel [14]. The ROS/MAP whole genome sequencing 

Table 1 Participants characteristics

Data are presented as mean (standard deviation) for continuous variables and n (%) for categorical variables

ADNI Alzheimer’s Disease Neuroimaging Initiatives, CSF cerebrospinal fluid, ADAS Alzheimer’s disease assessment scale, ROS Religious Orders Study, MAP Memory and 
Aging Project, Aβ amyloid beta, CN cognitively normal, MCI mild cognitive impairment
a For CSF data, the diagnosis information when the CSF was drawn was used. For ADAS-cog 13, the initial diagnosis was used

ADNI ROS/MAP

CSF dataset ADAS-cog 13 dataset

Number of subjects, n 1157 1495 1084

Age, years (mean (SD)) 73.0 (7.3) 73.5 (7.2) 80.5 (6.8)

Male sex, n (%) 509 (44.0) 850 (56.9) 361 (33.3)

Education, years (mean (SD)) 16.1 (2.8) 16.0 (2.8) 16.43 (3.6)

APOE ε4 carrier, n (%) 544 (47.0) 709 (47.4) 284 (26.2)

Follow‑up duration, years (mean (SD)) – 4.3 (3.0) 7.5 (4.6)

Diagnosis, n (%)a

 CN 337 (29.1) 445 (29.8) 683 (63.0)

 MCI 594 (51.3) 763 (51.0) 312 (28.8)

 Dementia 226 (19.5) 287 (19.2) 89 (8.2)

CSF Aβ42, pg/mL (mean (SD)) 1038.8(600.9) – –

ADAS‑cog 13, (mean (SD)) – 17.0 (9.5) –

Global cognition composite score, (mean (SD)) – – ‑0.125 (0.631)

Amyloid positivity, n (positive/negative/missing) 843/314/0 882/359/254 –

https://adni.loni.usc.edu
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libraries were prepared using the KAPA Hyper Library 
Preparation Kit in accordance with the manufacturer’s 
instructions and sequenced on an Illumina HiSeq X 
sequencer using pair-end read chemistry and read lengths 
of 150bp. The paired-end 150bp reads were aligned to 
the NCBI reference human genome (GRCh37) using the 
Burrows-Wheeler Aligner (BWA-MEM) [14, 15]. Local 
alignment was performed around indels to identify puta-
tive insertions or deletions in the region using the GATK 
(version 3.5) indel realignment tool. Base quality score 
recalibration was performed using the GATK BQSR. 
Variant calling and QC procedures have been described 
elsewhere [16]. Briefly, GATK HaplotypeCaller and Gen-
otypeGVCFs modules were used to generate individual 
genotype calls in genomic VCF and VCF format. Follow-
ing variant calling, the variant quality recalibration step 
in the GATK pipeline was used to empirically calibrate 
high quality variants. Variant-level QC was performed 
using PLINK, which includes checking genotype con-
cordance using previous GWAS data, excluding variants 
with excess and/or systematic genotype missingness, 
examining departure from Hardy-Weinberg Equilibrium, 
and identifying Mendelian inconsistencies among related 
individuals.

CSF biomarkers
In ADNI, CSF Aβ1-42 and phosphorylated Tau (p-Tau) 
levels were measured by validated and highly automated 
Roche Elecsys electrochemiluminescence immunoassays 
(Roche Diagnostics, Mannheim, Germany) [17].

Amyloid positivity
Amyloid positivity was determined using CSF Aβ1-42 
levels and 18F-Florbetapir positron emission tomogra-
phy (PET) standardized uptake value ratios (SUVRs). In 
terms of CSF Aβ1-42, the provisional cut-point of 1073 
pg/ml was used and 1.11 was used as the cut-point for 
18F-Florbetapir PET SUVR. Participants who tested posi-
tive at least once during the follow up were labeled as 
amyloid positive.

Cognitive performance measures
As a cognitive performance measure for the ADNI par-
ticipants, we used the AD Assessment Scale-cognitive 
subscale 13 (ADAS-cog13) [18], which includes 13 items 
(Word Recall, Naming Objects and Fingers, Commands, 
Constructional Praxis, Ideational Praxis, Orientation, 
Word Recognition, Language, Comprehension of Spoken 
Language, Word Finding Difficulty, Remembering Test 
Instructions, Delayed Word Recall, Number Cancellation 
or Maze Task) related to fundamental cognitive func-
tions. The ROS/MAP participants underwent cognitive 
assessment using a battery of 21 cognitive performance 

tests. Nineteen of these tests across a range of cogni-
tive abilities including 7 episodic memory tests (Word 
List Memory, Word List Recall, Word List Recognition, 
immediate and delayed recall of the East Boston Story 
and Story A from Logical Memory), 3 semantic mem-
ory tests (15-item Boston Naming Test, verbal fluency, 
15-item word reading test), 3 working memory tests 
(Digit Span Forward, Digit Span Backward, Digit Order-
ing), 2 perceptual orientation tests (Line Orientation, 
16-item progressive matrices), and 4 perceptual speed 
tests (Symbol Digits Modality-oral, Number Compari-
son, Stroop Color Naming, Stroop Word Naming) were 
used to construct a global composite measure of cogni-
tive function. Further, information on this composite 
measure is published elsewhere [19, 20].

Statistical analysis
For gene-based association analysis, we selected common 
SNPs (MAF >5%) located within ± 20 kb of upstream and 
downstream regions of the BMI1 gene. We chose the 20 
kb window, which provides an optimal width for includ-
ing potential regulatory SNPs in the 5′ and 3′ untrans-
lated regions (UTR) of BMI1, while controlling for false 
SNP-to-gene mappings due to larger windows. The gene-
based association analysis with additive genetic models 
was performed using a set-based test in PLINK. Permu-
tation (20,000 permutations) was used to adjust for mul-
tiple testing, which calculated an empirical p-value to 
determine the statistical significance of all SNPs in BMI1 
jointly. For CSF Aβ1-42 levels, age, sex, and APOE ε4 car-
rier status were used as covariates. Furthermore, we per-
formed association analysis of the SNP showing the most 
significant association with cognitive performance. We 
used a linear regression model with age, sex, and educa-
tional attainment as covariates. Longitudinal association 
analysis of the SNP with rates of cognitive decline was 
performed using a linear mixed-effects model under a 
missing at random hypothesis. The SNP genotype, time, 
the interaction term (SNP * time), age, sex, and educa-
tional attainment were treated as main effects. Random 
intercepts and slopes for time were used to accommodate 
individual variation. Because most (≃ 95%) ADNI par-
ticipants had a follow-up period shorter than 10  years, 
we used data points up to ten years from baseline to 
ensure the robustness of our results. For the same rea-
son, we included data points up to 17 years of follow-up 
for ROS/MAP. We performed sex- and APOE ε4 car-
rier status- and β-amyloid positivity-stratified analysis. 
In addition to the stratified analyses, we investigated 
the interaction between the SNP in BMI1 and grouping 
variables (sex, APOE ε4 carrier status, β-amyloid positiv-
ity). Because CSF Aβ1-42 levels and ADAS-cog13 scores 
showed a skewed distribution, we normalized the data 
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using log transformation and square root transformation, 
respectively.

Results
We analyzed eight common SNPs (MAF > 5%) located 
within ± 20 kb of the gene boundary of BMI1 from 
HRC-based imputed ADNI GWAS data. Gene-based 
association analysis showed that BMI1 was signifi-
cantly associated with CSF Aβ1-42 levels (permutation-
corrected p = 0.005). The significance of associations, 
genomic locations, and linkage disequilibrium informa-
tion between the eight SNPs are shown in Supplemen-
tary Figure 2. Among the eight SNPs, rs17415557 showed 
the most significant association with CSF Aβ1-42 levels 
(β (SE) = 0.116 (0.035), p = 0.001). This SNP was highly 
correlated with rs72814833 (R2 = 0.99), a 697 base pair 
upstream (5′) variant of BMI1, which was also signifi-
cantly associated with CSF Aβ1-42 levels (β (SE) = 0.116 
(0.036), p = 0.001). Participants with minor alleles (G) of 
rs17415557 have higher CSF Aβ1-42 levels, compared to 
those with no minor alleles (Fig.  1A). Stratified analysis 
by sex and amyloid positivity showed that this association 
was pronounced in males (male: β (SE) = 0.151 (0.047), p 
= 0.001; female: β (SE) = 0.075 (0.052), p = 0.152) and in 
amyloid-positive participants (amyloid-negative: β (SE) = 
0.052 (0.035), p = 0.131; amyloid-positive: β (SE) = 0.099 
(0.034), p = 0.004) (Table  2), although no significant 
interactions were found (p = 0.276 for sex * rs17415557, 
p = 0.473 for amyloid positivity* rs17415557). The asso-
ciation was significant in both APOE ε4 carrier status 
groups when stratified. For CSF p-Tau, a tau biomarker 
for AD, we did not find any significant associations 
between rs17415557 and CSF p-Tau levels (β (SE) = 
− 0.020 (0.032), p = 0.521).

For cognition performance at baseline, participants 
with minor alleles of rs17415557 showed higher ADAS-
cog 13 scores in ADNI (β (SE) = 0.194 (0.070), p = 0.006). 
This association was pronounced in males (male: β (SE) 
= − 0.210 (0.086), p = 0.014; female: β (SE) = − 0.166 
(0.117), p = 0.158) and in amyloid-positive participants 
(amyloid-negative: β (SE) = − 0.081 (0.099), p = 0.413; 
amyloid-positive: β (SE) = − 0.255 (0.095), p = 0.008). 
However, none of these cross-sectional association 
results of cognitive performance was replicated in ROS/
MAP.

In order to investigate the effect of rs17415557 on rates 
of cognitive decline, we performed a longitudinal analy-
sis of cognitive performance in two independent cohorts. 
The longitudinal analysis identified and replicated the 
significant association of rs17415557 with rates of cogni-
tive decline (Fig.  1B, C). Participants with minor alleles 
of BMI1 rs17415557 had slower cognitive decline over 
time compared to those with no minor alleles, for ADAS-
cog13 (a higher score indicating poor cognitive function) 
in ADNI, β (SE) = − 0.035 (0.016) and p = 0.024; for a 
global composite measure of cognitive function (a lower 
score indicating poor cognitive function) in ROS/MAP, 
β (SE) = 0.024 (0.010) and p = 0.020. The sex-stratified 
analysis showed that the impact of rs17415557 on rates of 
cognitive decline was stronger in females in both cohorts 
(for ADNI, male: β (SE) = − 0.021 (0.019), p = 0.277; 
female: β (SE) = − 0.051(0.025), p = 0.044; for ROS/
MAP, male: β (SE) = 0.007 (0.017), p = 0.670; female: β 
(SE) = 0.032 (0.013), p = 0.012) (Table 2). However, the 
interaction between sex and the rate of cognitive decline 
(sex * rs17415557 * time) was not significant (p= 0.539).

We identified rs72814833, which is closely correlated 
with rs17415557 (R2 = 0.99) and a 697 base pair upstream 

Fig. 1 Association of BMI rs17415557 with CSF Aβ1‑42 levels and rates of cognitive decline. A Participants with minor alleles (G) of rs17415557 have 
higher CSF Aβ1‑42 levels, compared to those with no minor alleles (β (SE) = 0.05(0.02), p = 0.001). Participants with minor alleles of BMI1 rs17415557 
had slower cognitive decline over time compared to those with no minor alleles; for B, ADAS‑cog13 (a higher score indicating poor cognitive 
function) in ADNI, β (SE) = − 0.035 (0.016) and p = 0.024; for C, a global composite measure of cognitive function (a lower score indicating poor 
cognitive function) in ROS/MAP, β (SE) = 0.024 (0.010) and p = 0.020
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(5′) variant of BMI1, as significantly associated with CSF 
Aβ1-42 levels, cognitive performance at baseline, and 
rates of cognitive decline, which was replicated in ROS-
MAP, as expected due to the strong correlation between 
rs72814833 and rs17415557 (Supplementary table 1).

Discussion
Here, we investigated the influence of genetic variants in 
BMI1 on CSF Aβ1-42 levels and rates of cognitive decline. 
Our gene-based association analysis showed that BMI1 
was significantly associated with CSF Aβ1-42 levels. BMI1 
rs17415557 with the most significant association with 
CSF Aβ1-42 levels was also significantly associated with 
rates of cognitive decline, which was replicated in an 
independent cohort. Notably, the T to G substitution of 
rs17415557 was associated with higher CSF Aβ1-42 levels 

and slower cognitive decline over time. In a recent large-
scale GWAS from the International Genomics of Alzhei-
mer’s Project [1], the major allele (T) of rs17415557 was 
nominally associated with AD (β (SE) = 0.071 (0.035), p 
= 0.045). These results imply that the minor allele (G) of 
rs17415557 may have a protective effect against AD.

Our first major finding was that BMI1 rs17415557 is 
associated with CSF Aβ levels. Interestingly, these find-
ings were prominent within amyloid-positive subjects. 
This result is in line with a previous study where BMI1 
gene expression levels were decreased only in AD and 
not in other dementias [8], since amyloid positivity is a 
hallmark of AD. One possible explanation for the rela-
tionship between BMI1 and AD suggested in a previous 
study is that BMI1 deficiency leads to increased p53 and 
GSK3β levels, which can impair proteasome function [8]. 
However, the role and molecular mechanism that BMI1 
rs17415557 polymorphism may specifically play in the 

Table 2 Association of BMI1 rs17415557 with CSF Aβ42 and cognitive function

ADNI Alzheimer’s Disease Neuroimaging Initiatives, CSF cerebrospinal fluid, ADAS Alzheimer’s disease assessment scale, ROS Religious Orders Study, MAP Memory and 
Aging Project, Aβ amyloid beta
a Multiple linear models accounting for age, sex, APOE genotype, and educational attainment were tested. Regression statistics of the main effect “rs17415557” in each 
model are shown
b Linear mixed-effects models accounting for age, sex, APOE genotype, and educational attainment were tested. Regression statistics of the interaction term 
“rs17415557 * time” in each model are shown

N Cross-sectionala Longitudinalb

β SE p value β SE p value

ADNI dataset

 CSF Aβ42

  All subjects 1157 0.116 0.035 0.001
  Male 509 0.151 0.047 0.001
  Female 648 0.075 0.052 0.152

  ε4 non‑carrier 613 0.109 0.049 0.028
  ε4 carrier 544 0.120 0.049 0.014
  Amyloid (−) 314 0.052 0.035 0.131

  Amyloid (+) 843 0.099 0.034 0.004
 ADAS‑cog 13

  All subjects 1495 − 0.194 0.070 0.006 − 0.035 0.016 0.024
  Male 850 − 0.210 0.086 0.014 − 0.021 0.019 0.277

  Female 645 − 0.166 0.117 0.158 − 0.051 0.025 0.044
  ε4 non‑carrier 786 − 0.147 0.089 0.097 − 0.027 0.016 0.091

  ε4 carrier 709 − 0.185 0.104 0.076 − 0.029 0.027 0.286

  Amyloid (−) 359 − 0.081 0.099 0.413 − 0.020 0.016 0.219

  Amyloid (+) 882 − 0.255 0.095 0.008 − 0.041 0.021 0.049
ROS/MAP dataset

 Global cognition score

  All subjects 1084 0.065 0.041 0.116 0.024 0.010 0.020
  Male 361 0.029 0.075 0.696 0.007 0.017 0.670

  Female 723 0.089 0.048 0.067 0.032 0.013 0.012
  ε4 non‑carrier 800 0.071 0.044 0.107 0.021 0.010 0.042
  ε4 carrier 284 − 0.016 0.095 0.865 0.023 0.026 0.383
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pathogenesis of AD warrants further investigation. CSF 
phosphorylated tau (pTau) levels were not significantly 
associated with BMI1 rs17415557, although the direction 
of association was consistent with that of CSF Aβ levels. 
Previous studies showed significant associations between 
BMI1 and pTau levels based on gene or transcript levels. 
Further investigations are needed to validate our find-
ing for the association of CSF pTau levels with BMI1 
rs17415557.

Another major finding was that the minor allele (G) of 
rs17415557 had a significant protective effect on cogni-
tive decline over time. AD is a chronic progressive dis-
order showing substantial individual variation in the 
time-course of cognitive decline [21], making it crucial 
to predict the clinical trajectory [22]. rs17415557 appears 
to contribute to this clinical course variability. Notably, 
the protective effect of the G allele on cognitive decline 
is most prominent among females. It is not unusual for 
a SNP to have a differential effect between sexes. The 
APOE ε4 allele is also differentially associated with cog-
nitive decline in males and females, particularly having a 
more significant impact on females [23].
BMI1 rs72814833, which is a 697 base pair upstream 

(5′) variant of BMI1 and highly correlated with 
rs17415557, is also significantly associated with CSF Aβ1-

42 levels and rates of cognitive decline. BMI1 rs72814833 
is known to bind with Egr1 protein as determined by the 
HaploReg v4.1 online tool (https:// pubs. broad insti tute. 
org/ mamma ls/ haplo reg/ haplo reg. php) (Supplementary 
Table 2). Egr1 is a member of a zinc-finger transcription 
factor family, and a previous mouse model study showed 
that Egr1 −/− hematopoietic stem cells exhibited signifi-
cantly elevated levels of BMI1 expression [24]. Although 
speculative, polymorphisms in the protein binding site 
might have influenced the action of Egr1, which could 
have contributed to our results. Our analysis for 3D chro-
matin interactions near BMI1 rs17415557 showed that 
several distant genes, including ARMC3, DNAJC1, and 
SKIDA1, also interacted with regions near rs17415557 at 
3D chromatin, and their expression might also be regu-
lated by rs17415557.

Limitations
A few limitations of this study should be noted. First, 
replication studies with independent larger samples are 
needed to confirm the association of BMI1 with CSF Aβ1-

42 levels. Second, the mechanism by which the identified 
SNPs in BMI1 affect the BMI1 gene and hence Aβ level is 
unknown. Besides the protein-binding properties of the 
identified SNPs found on a public database, further func-
tional studies are needed to determine the specific bio-
chemical mechanism. Third, for cognitive performance, 
ADAS-cog13 was used in ADNI, whereas a different 

global composite measure of cognitive function was used 
in ROS/MAP. Nevertheless, it is noteworthy that this is 
the first study to show that rs17415557 and rs72814833, 
genetic variants located in the upstream region of the 
BMI1 gene, may play a protective role against AD.

Conclusion
In conclusion, the findings of our study from two inde-
pendent well-characterized cohorts provide funda-
mental evidence that BMI1 and SNPs (rs17415557 and 
rs72814833) in BMI1 are associated with CSF Aβ1-42, a 
hallmark biomarker of AD, and cognitive decline rates. 
These findings support results of previous studies linking 
BMI1 to protection against AD [4, 5, 8]. Further studies, 
including animal models, are needed to investigate the 
molecular mechanisms underlying our findings.
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